Ir al contenido principal

Definición de Número Primo, el Número 2 cómo No Primo y Definición de Primos de Marcene.

 Definición de Número Primo

¿Qué es un Número Primo?


Definición de Número Primo


25/11/2025 13:23:00

Definición de Número Primo:


Cualquier número entero de valor grupal mayor a 2 o menor a -2 e impar, que solo puede ser dividido con resultado entero , entre el número a si mismo, o a 1, se dice que es un número primo.

El Cuestionable Número Primo Par: El 2 Según Pol:


Si la definición de número primo, nos dice, que un número primo, sólo puede ser X/1=X o X/X=1 que lo cumplen todos los números y que también a de cumplir que no sea X/Y=Entero, lo cual, definiría a un no primo, entonces el divisor de 1 , no cuenta, ya que lo tenemos en la expresión de X/1 , por lo que el siguiente divisor es el 2 , pero X no podría ser X=2 ya que lo igualaríamos con X/X entonces la expresión de un no primo empieza con el X/Y con un Y menor a X , donde el valor mínimo de Y es 2 , lo cual nos deja, que para cumplir con un X mayor a Y en X/Y hay que tener un X mayor a Y con un X=3 mayor a 2

Así, el 1 y el 2 no son el primer caso de verificación de no primo por X/Y donde X es el 3 , que sería el primer caso, en busca de un no primo con el X/Y=3/2=1,5 ( siendo este 3 número primo, ya que es el único caso y el primer primo, pasando por todos verificando los impares que le siguen... )

Cosas de Sumas y Divisores de Enteros:


Cuando un número no primo, es menor, que la suma de sus divisores menos a si mismo, se dice que es un número abundante, y, por el contrario, cuando es un número mayor, que la suma de sus divisores menos a si mismo, son números deficientes.

Por ejemplo: El 12 tiene cómo divisores el 2 , 3 , 4 y 6 que sumados son 15 y es mayor a 12, por tanto 12 es un número abundante.

Otro ejemplo: El 8 tiene cómo divisores el 2, 4 que sumados son 6 y es menor a 8, por tanto 8 es un número deficiente.

Estos son los primeros números primos:

El falso primo 2 y el resto de primos impares 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , etc...

Definición de Número Primo de Marcene:


Los números primos de Marcene, son un tipo de números primos, que cumplen (2^X)-1 cuando X es número primo y su resultado también resulta en número primo.

Por ejemplo: el número primo 3 es (2^3)-1=7 donde 7 también es primo cómo 3 por tanto 3 es un primo de Marcene.

Otro ejemplo: el número primo 11 es (2^11)-1=2047 donde 2047 no es primo... Por tanto 11 no es un primo de Marcene.

Usa o descarga la app de números primos de Pol Software desde aquí:

Comentarios

Entradas populares de este blog

La Nueva App "Virtual Combinator" para Jugar al Gordo de la Primitiva Español

La Nueva App Virtual Combinator Juega al Gordo de la Primitiva con la Ayuda de Está App Usa la App Virtual Combinator para Hacer Tus Apuestas Usa o descarga la app virtual combinator para hacer apuestas en las loterías españolas para el juego del gordo de la primitiva. https://dos-a-la-tres.com/aplicaciones-online.php#App-Virtual-Combinator-Web

Aplicación del Teorema de Pitágoras

 Aplicación del Teorema de Pitágoras Aplicación del Teorema de Pitágoras Aplicación del Teorema de Pitágoras En la web de Pol puedes encontrar los artículos completos sobre matemáticas de temas muy diversos.   También encontrarás los aplicativos de ejemplo del teorema de Pitágoras en JavaScript del Autor Pol... Consulta el artículo completo de Pol sobre el Teorema de Pitágoras con su App en la web de Pol Software: https://dos-a-la-tres.com/matematicas-3.php#02-Teorema-de-Pitagoras Consulta todo el contenido de Pol en matemáticas: https://dos-a-la-tres.com/matematicas.php  

La Base 2 Como Punto 0 en el Teorema de Pitágoras

 La Base 2 Como Punto 0 en el Teorema de Pitágoras Este es mi punto de vista sobre el 2 sobre el teorema de las áreas El punto de vista reflexivo de Pol en el teorema de Pitágoras Si en el Teorema de Pitágoras, se cumple, que con triángulos rectángulos isósceles pasa esto cuando el lado A = 2 tenemos que: 2,82842712 = RootSquare( (2^2 ) + (2^2 ) ) Y esto tiene un área igual a base ya que (2·2)/2=2 entonces partimos de 0 Entonces, lo mismo con bases menores a 2 que pasaría: 1,99999999 = RootSquare( (1,41421356^2 ) + (1,41421356^2 ) ) Y esto tiene un área menor a base ya que (1,41421356·1,41421356)/2=1 entonces partimos de que base es mayor a área ya que (1,41421356·1,41421356)/2=1 y 1 es menor que 1,41421356  Entonces, lo mismo con bases mayores a 2 que pasaría: 5,65685424 = RootSquare( (4^2 ) + (4^2 ) ) Y esto tiene un área mayor a base ya que se cumple que (4·4)/2=8 y 8 es mayor que 4 Siguiendo en el caso de menores a 2 pero siendo menores a 1 pasa que: 0,70710678 = RootSquar...

Manuales de la Trigonogeometría

 Manuales de la Trigonogeometría Consulta los Manuales de la Trigonogeometría Manuales de Pol Sobre la Trigonogeometría La trigonogeometría es la fusión entre conceptos de trigonometría y geometría que ha desarrollado Pol en su estudio sobre estos temas. Estos manuales los puedes encontrar en las siguientes direcciones de internet con un navegador. Sección: Saber Más Sobre Trigonometría https://dos-a-la-tres.com/matematicas-3.php#03-Saber-Mas-Sobre-Trigonometria Sección: Saber Más Sobre Geometría https://dos-a-la-tres.com/matematicas-3.php#04-Saber-Mas-Sobre-Geometria Artículo: El Teorema de Pitágoras https://dos-a-la-tres.com/matematicas-3.php#02-Teorema-de-Pitagoras Artículo: Figuras Geométricas https://dos-a-la-tres.com/matematicas-3.php#02-~8Que-son-las-Figuras-Geometricas~9

La Lógica de Potencias de Base 5 en las Calculadoras Pol Power Calculator

La Lógica de Potencias de Base 5  La Lógica de Potencias de Base 5  Calculadoras Pol Power Calculator Potencias de la Base 5 en las Calculadoras Pol Power Calculator Las potenciaciones de las calculadoras Pol Power Calculator son lo más exacto y semejante que se puede hacer a las potencias para que sean multiplicaciones perfectas que se puede dar en un proyecto de este calibre. La lógica de potenciación aplicada en estas cuando el exponente es de números racionales, puede confundir respecto a otras calculadoras y me explico... Si tenemos que de 5^1=5 a 5^2=25 hay estas potencias de exponente racional  5 = 5 ^ 1 7 = 5 ^ 1,1 9 = 5 ^ 1,2 11 = 5 ^ 1,3 13 = 5 ^ 1,4 15 = 5 ^ 1,5 17 = 5 ^ 1,6 19 = 5 ^ 1,7 21 = 5 ^ 1,8 23 = 5 ^ 1,9 25 = 5 ^ 2 Esto es así, ya que entre potencia y potencia hay (25-5) / 10 = 2 de diferencias entre cada unidad racional de esos exponentes y que tiene mucho que ver esta escala con la siguiente: 25 = 5 ^ 2 = 5·5 35 = 5 ^ 2,1 = 7·5 45 = 5 ^ 2,2 = 9·5 55 ...

Conjetura de Pol Sobre Naturales Pares o Impares Multiplicados

Conjetura de Pol y la Multiplicación  La conjetura de Pol Sobre 2 Números Naturales Ambos Pares o Impares Seguidos y Multiplicados  Esta es la conjetura de Pol sobre números naturales ambos pares o impares seguidos y multiplicados La conjetura de Pol sobre números naturales ambos pares o impares seguidos y multiplicados dice lo siguiente: Entre dos números naturales ambos pares o impares de valor grupal y seguidos, siempre existe un número intermedio entre ellos, que multiplicado a si mismo, es mayor a la multiplicación de esos 2 pares o impares. Si quieres saber más sigue mis artículos web desde estos enlaces: https://dos-a-la-tres.com/matematicas-1.php#Conjeturas