Ir al contenido principal

Propiedades de las Potencias en las calculadoras Pol Power Calculator

 Propiedades de las Potencias en las Calculadoras Pol Power Calculator

Propiedades: Equitativa, Equidistante y Correlativa, de las Potencias en las Calculadoras Pol Power Calculator




Anti-cuadrado

La Propiedad Equitativa, Equidistante y Correlativa

La irrefutable verdad de los números no anti-cuadrados esta en estas formulaciones hechas con las calculadoras Pol Power Calculator:

Por ejemplo, tenemos los siguientes cuadrados:

0^2=0
1^2=1
2^2=4
3^2=9
4^2=16
5^2=25
6^2=36
7^2=49
8^2=64
9^2=81
10^2=100

Todos estos números de resultados son números no anti-cuadrados.

Como se puede apreciar, parece no existir una escala perfecta y en armonía. Todos los números son distintos de cara a la separación entre ellos, lo cual, lleva a pensar, que no hay relación entre unos y otros, aunque si la hay.

Por ejemplo:

Entre 0^2=1 y el 1^2=4 hay 1 = 1-0
Entre 1^2=1 y el 2^2=4 hay 3 = 4-1
Entre 2^2=4 y el 3^2=9 hay 5 = 9-4
Entre 3^2=9 y el 4^2=16 hay 7 = 16-9
Entre 4^2=16 y el 5^2=25 hay 9 = 25-16
Entre 5^2=25 y el 6^2=36 hay 11 = 36-25
Entre 6^2=36 y el 7^2=49 hay 13 = 49-36
Entre 7^2=49 y el 8^2=64 hay 15 = 64-49
Entre 8^2=64 y el 9^2=81 hay 17 = 81-64
Entre 9^2=81 y el 10^2=100 hay 19 = 100-81

Así, lo que vemos, es que las diferencias entre sus contiguas, están en números impares, y se diferencian entre ellas con un número par ( 2 ). 

Entonces, formulando lo mismo, con números de base iguales, pero, con exponentes racionales, ¿Pasará lo mismo?

0 = 0 ^ 1,5
1 = 1 ^ 1,5
3 = 2 ^ 1,5
6 = 3 ^ 1,5
10 = 4 ^ 1,5
15 = 5 ^ 1,5
21 = 6 ^ 1,5
28 = 7 ^ 1,5
36 = 8 ^ 1,5
45 = 9 ^ 1,5
55 = 10 ^ 1,5

Entre 1-0 = 1
Entre 3-1 = 2
Entre 6-3 = 3
Entre 10-6 = 4
Entre 15-10 = 5
Entre 21-15 = 6
Entre 28-21 = 7
Entre 36-28 = 8
Entre 45-36 = 9
Entre 55-45 = 10

Si en el anterior teníamos una diferencia entre diferencias de 2 , aquí la tenemos de 1 , lo cual, indica que las potencias, son correctas.

Esto es así por el 2·0,5=1 de diferencia

Si en vez de X^1,5 hubiéramos utilizado el X^1,25 la diferencia sería de 0,5 de 2·0,25 


Prueba las calculadoras Pol Power Calculator desde las siguientes direcciones:

https://www.dos-a-la-tres.com/aplicaciones-online.php#Pol-Power-Calculator-Web

https://www.dos-a-la-tres.com/aplicaciones.php#Pol-Power-Calculator


Comentarios

Entradas populares de este blog

Calculadoras de Factoriales

Calculadoras de Factoriales Las Pol Power Calculator son 2 Calculadoras de Factoriales Puedes Calcular un Número Factorial multiplicativo o de suma junto al ante-cuadrado con las Calculadoras Pol Power Calculator Aquí te muestro enlaces hacia las dos calculadoras llamadas Pol Power Calculator con las que podrás hacer factoriales de sumas en un clic . Versión Web:  https://www.dos-a-la-tres.com/aplicaciones-online.php#Pol-Power-Calculator-Web Versión Windows:  https://www.dos-a-la-tres.com/aplicaciones.php#Pol-Power-Calculator Utiliza la App Factoriales exclusiva de Pol Software desde el artículo en la Web de Pol en: https://dos-a-la-tres.com/aplicaciones-online.php#App-Factoriales

Cálculo del Factorial de Sumas de un Número X Natural

 Cálculo del Factorial de Suma de un Número X Natural Cálculo de las Sumas Factoriales de un Número X Natural Cálculo de los Factoriales de Sumas de Números X Naturales El factorial de suma de un número natural, se calcula, con la formula del ante-cuadrado, que es: X!S = X^1,5 = (X+1)·(X/2) = X·((X/2 )+0,5) donde X es cualquier número natural diferente a 0 Descubre más cosas sobre el factorial de suma en la web de Pol en: https://dos-a-la-tres.com/matematicas.php

La Mejor Guía Micológica Interactiva de Internet de Setas de Catalunya

 La Guía de Setas Catalanas Una de las Mejores Guías Interactivas Micológicas en Catalán en Internet Sobre Setas de Cataluña Encuentra en la guía micológica de setas de Pol, información sobre las setas de la zona geográfica de Catalunya "La Guía de Setas Catalanas" es una guía micológica en catalán de setas en la que puedes encontrar un catalogo de setas clasificadas en diversos ordenes según preferencias del autor y todas las setas son de las especies que puedes encontrar en los bosques y montes de la zona geográfica de Catalunya. Las setas de esta guía micológica, están clasificadas por ordenes de clase u orden, familia, nombre común y nombre en Griego y Latín. También existen ordenes de clasificación de las comestibles que más le gustan al autor ( Pol ), de las que son tóxicas o requieren más cuidado por confusión con otras especies tóxicas y de las no comestibles, con puntuaciones de estrellas sobre todas las comestibles y seguras de ser comestibles. En esta página encont...

¿Qué es una Seta?

 ¿Qué es una Seta? Definición de ¿Qué son las Setas? Las setas son organismos pluricelulares de vida heterótrofa En un sentido muy amplio, las setas son organismos pluricelulares de vida heterótrofa, que se alimentan del contenido orgánico del suelo de los bosques donde residen y proliferan, gracias a la humedad y el contenido orgánico del medio ambiente natural en el que vive. Las setas son un conjunto de hongos fructíferos heterótrofos que se nutren y obtienen energía de otros organismos junto con la humedad que les proporciona el medio natural del suelo en los bosques y campos abiertos.    En la guía de setas catalanas puedes encontrar más datos interesantes sobre las setas en preguntas frecuentes sobre las setas. Dirígete a la web oficial de "La Guía dels Bolets Catalans" donde encontrarás un montón de preguntas frecuentes sobre las setas en: https://www.dos-a-la-tres.com/setas.php#Preguntes-Frequents Descubre esta Guía de Setas Catalanas en: https://www.dos-a-la-tres...

La Simetría de Pares en las Potenciaciones de Números Naturales Diofánticos

 La Simetría de Pares La Simetría de Pares en la Potenciación La Simetría de Pares en la Potenciación Sobre Números Naturales La simetría de pares, es una teoría de Pol, que nos dice, que multiplicar o dividir cualquier número par natural por 2 , nunca presenta ni racionales ni infinitos. La simetría de pares, también, es la que determina, que entre X y X al cuadrado, o, de X al cuadrado a X al cubo, con una unidad de exponente de distancia cómo en sucesivos, cuando X es natural, siempre hay un número par de distancia, siendo así la parte de 1 unidad de exponente equivalente a un natural par, con una parte de distancia de números pares siempre. La simetría de pares, es un teorema, que parte sobre ecuaciones con naturales, que nos muestra, que en esta sucesión de ecuaciones diofánticas naturales, de números a si mismos como los siguientes, no existen los exponentes impares en los resultados naturales, siendo todos ellos de exponente natural par de su doble. Si tenemos que en la sime...

¿Cómo Restaurar los Colores de una Imagen en Escala de Grises?

 ¿Cómo Restaurar los Colores de una Imagen en Escala de Grises? Restaurar los colores originales de una fotografía en escala de grises, es una cosa casi imposible, pero si que es posible colorizar-la con colores cercanos a los originales... Coloriza una Imagen en escala de grises con la ayuda del programa Black Or White para Windows de Pol Software Con el programa Black Or White de Pol Software para Windows puedes colorizar imágenes cómo las mostradas en este artículo las cuales se les somete a un proceso de colorización el cual le devuelve algunos colores que en apariencia son cercanos a los originales. El resultado de hacer esto es bastante bueno pero no le devuelve la realidad colorística ya que restaurar no se puede desde el punto de vista de la resolución de la definición de imagen.  Cuando convertimos una imagen de color a escala de grises, lo que hacemos, es cambiar el número de colores de 16.777.216 a 256 lo cual queda una imagen con el 0,00152587890625 de re...