Ir al contenido principal

Propiedades de las Potencias en las Pol Power Calculator

 Propiedades de las Potencias en las Pol Power Calculator

Las Propiedades Equitativa, Equidistante y Correlativa de las Potencias en las Pol Power Calculator




Anti-cuadrado

La Propiedad Equitativa, Equidistante y Correlativa de las Potencias en las Pol Power Calculator

La irrefutable verdad de los números no anti-cuadrados esta en estas formulaciones hechas con las calculadoras Pol Power Calculator:

Por ejemplo, tenemos los siguientes cuadrados:

0^2=0
1^2=1
2^2=4
3^2=9
4^2=16
5^2=25
6^2=36
7^2=49
8^2=64
9^2=81
10^2=100

Todos estos números de resultados son números no anti-cuadrados.

Como se puede apreciar, parece no existir una escala perfecta y en armonía. Todos los números son distintos de cara a la separación entre ellos, lo cual, lleva a pensar, que no hay relación entre unos y otros, aunque si la hay.

Por ejemplo:

Entre 0^2=1 y el 1^2=4 hay 1 = 1-0
Entre 1^2=1 y el 2^2=4 hay 3 = 4-1
Entre 2^2=4 y el 3^2=9 hay 5 = 9-4
Entre 3^2=9 y el 4^2=16 hay 7 = 16-9
Entre 4^2=16 y el 5^2=25 hay 9 = 25-16
Entre 5^2=25 y el 6^2=36 hay 11 = 36-25
Entre 6^2=36 y el 7^2=49 hay 13 = 49-36
Entre 7^2=49 y el 8^2=64 hay 15 = 64-49
Entre 8^2=64 y el 9^2=81 hay 17 = 81-64
Entre 9^2=81 y el 10^2=100 hay 19 = 100-81

Así, lo que vemos, es que las diferencias entre sus contiguas, están en números impares, y se diferencian entre ellas con un número par ( 2 ). 

Entonces, formulando lo mismo, con números de base iguales, pero, con exponentes racionales, ¿Pasará lo mismo?

0 = 0 ^ 1,5
1 = 1 ^ 1,5
3 = 2 ^ 1,5
6 = 3 ^ 1,5
10 = 4 ^ 1,5
15 = 5 ^ 1,5
21 = 6 ^ 1,5
28 = 7 ^ 1,5
36 = 8 ^ 1,5
45 = 9 ^ 1,5
55 = 10 ^ 1,5

Entre 1-0 = 1
Entre 3-1 = 2
Entre 6-3 = 3
Entre 10-6 = 4
Entre 15-10 = 5
Entre 21-15 = 6
Entre 28-21 = 7
Entre 36-28 = 8
Entre 45-36 = 9
Entre 55-45 = 10

Si en el anterior teníamos una diferencia entre diferencias de 2 , aquí la tenemos de 1 , lo cual, indica que las potencias, son correctas.

Esto es así por el 2·0,5=1 de diferencia

Si en vez de X^1,5 hubiéramos utilizado el X^1,25 la diferencia sería de 0,5 de 2·0,25 


Prueba las calculadoras Pol Power Calculator desde las siguientes direcciones:

https://www.dos-a-la-tres.com/aplicaciones-online.php#Pol-Power-Calculator-Web

https://www.dos-a-la-tres.com/aplicaciones.php#Pol-Power-Calculator


Comentarios

Entradas populares de este blog

Las Partes Medias en Multiplicaciones No Son Las Que Parecen

 Las Partes Medias en Multiplicaciones No Son Las Que Parecen ¿Por que (2^1)·(2^2) no es igual a (2^1,5)·(2^1,5) si la suma de racionales de exponente es de 3?  Por la sencilla razón siguiente: 2·4=8 pero 3·3=9 Encuentra más información en mis paginas de matemáticas con Pol en: https://dos-a-la-tres.com/matematicas.php

Simetría Par o Simetría Impar

Simetría Par o Simetría Impar La Simetría Par o Impar Si en mis calculadoras tenemos lo siguiente: 2^10 = 1024 donde esta es de simetría par (10) 2^11 = 2048 donde esta es de simetría impar (11) 2^12 = 4096 donde esta es de simetría par otra vez (12) Entonces se cumple que  64 = 4096 yRoot 2 = 2^6 45,25483399 = 2048 yRoot 2 = 2^5,5 pero este caso de potencia no es así en mis calculadoras, siendo 2^5,5=48   32 = 1024 yRoot 2 = 2^5 Entonces puedes pensar que el 45 esta entre 32 y el 64 pero ese caso es de simetría impar ( 45,254... ) y no de pares ( 48 ) cómo la inicial ( 2 ) y entonces se cumple que: 1024 = 32^2 esta es fácil de simetría par 2048 = (64-0,5)!S esta es la de simetría impar, así que le pasamos una simetría impar para hacer el par exacto 4096 = 64^2 otra vez de simetría par... Cómo digo siempre, la solución está muchas veces entre naturales, los cuales, cumplen axiomas y teorías que son la base para luego tener reales que cumplan con los naturales...  ...

Tipos de Setas

 Tipos de Setas Encuentra en "La Guía de Setas Catalanas" algunos de los tipos de seta que crecen en bosques de Catalunya Encuentra una clasificación con algunos de los tipos de setas Encuentra en "la guía de setas catalanas" algunos de los tipos de setas más comunes de Catalunya en diversas clasificaciones, ordenadas por clase, orden y genero en las siguientes direcciones: https://www.dos-a-la-tres.com/setas.php Página de Inicio https://www.dos-a-la-tres.com/bolets.php  Todos los tipos de setas de la guía ordenadas por clases, ordenes y genero

Propiedades de Sumas Factoriales

 Propiedades de Sumas Factoriales Propiedades de los Factoriales de Suma Propiedades de los Factoriales de Suma en las Calculadoras Pol Power Calculator A continuación te doy a conocer las propiedades de los factoriales de suma Calculo del Factorial de Suma de un Natural de X ( Valor Medio Entre X y X^2 ) X!S = (X+1)·(X/2) Calcular Cuadrados Naturales con los Factoriales de Suma ( Valor Correlativo )  X^2 = X!S + (X-1)!S Calcular el Cubo Natural Basando-se en una Simetría Par Natural Y = ((X^2)-0,5)!S  X^3 = (Y · 2) / X Que esto es por: X^2 = X + ((X-1)!S +  (X-1)!S ) Calcular Números Perfectos con Factoriales de Suma ( Valor de Perfecto ) Perfecto = ((2^X)-1)!S Donde la X es Cualquier Natural Impar Mayor a 2  Aprende más cosas entrando a mi web en: https://dos-a-la-tres.com/matematicas.php

¿Cómo Restaurar los Colores de una Imagen en Escala de Grises?

 ¿Cómo Restaurar los Colores de una Imagen en Escala de Grises? Restaurar los colores originales de una fotografía en escala de grises, es una cosa casi imposible, pero si que es posible colorizar-la con colores cercanos a los originales... Coloriza una Imagen en escala de grises con la ayuda del programa Black Or White para Windows de Pol Software Con el programa Black Or White de Pol Software para Windows puedes colorizar imágenes cómo las mostradas en este artículo las cuales se les somete a un proceso de colorización el cual le devuelve algunos colores que en apariencia son cercanos a los originales. El resultado de hacer esto es bastante bueno pero no le devuelve la realidad colorística ya que restaurar no se puede desde el punto de vista de la resolución de la definición de imagen.  Cuando convertimos una imagen de color a escala de grises, lo que hacemos, es cambiar el número de colores de 16.777.216 a 256 lo cual queda una imagen con el 0,00152587890625 de re...

2 Formas de Calcular Potenciaciones de Exponente Entero y Racional

 2 Formas de Calcular Potenciaciones de Exponentes Entero y Racionales 2 Formas de Calcular Potenciaciones de Exponentes Racionales Según Pol 2 Formas de Calcular Potencias de Exponente Entero y Racional Según Pol Para empezar, te diré, 2 formas de calcular potenciaciones de exponente entero y racional con positivos según dos teorías, una la oficialista y la otra la que creo personalmente que es la buena que la llamo teoría de Pol. Versión oficialista Primero empezamos por la oficialista en la que se hacen estas ecuaciones: Cuando X es diferente a 0 y 1 , y M,N es diferente a 0,0 pasa esto:   X^M,N = (X yRoot (1/0,N)) · X^M Cuando X es diferente a 0 y 1 y M es natural pasa esto:   X^M = X^(M-1)·X Solo es exponente menos 1 en la potencia de exponente entero... Versión de la Teoría de Pol Ahora veamos la teoría de Pol sobre potencias: Cuando X es mayor a 1 y M es mayor a 1 y N es diferente a 0 pasa lo siguiente: X^M,N = (X^M)+((X^M)·((X-1)·0,N)) Cuando X esta entre 0 y 1 y ...