Ir al contenido principal

Propiedades de las Potencias en las calculadoras Pol Power Calculator

 Propiedades de las Potencias en las Calculadoras Pol Power Calculator

Propiedades: Equitativa, Equidistante y Correlativa, de las Potencias en las Calculadoras Pol Power Calculator




Anti-cuadrado

La Propiedad Equitativa, Equidistante y Correlativa

La irrefutable verdad de los números no anti-cuadrados esta en estas formulaciones hechas con las calculadoras Pol Power Calculator:

Por ejemplo, tenemos los siguientes cuadrados:

0^2=0
1^2=1
2^2=4
3^2=9
4^2=16
5^2=25
6^2=36
7^2=49
8^2=64
9^2=81
10^2=100

Todos estos números de resultados son números no anti-cuadrados.

Como se puede apreciar, parece no existir una escala perfecta y en armonía. Todos los números son distintos de cara a la separación entre ellos, lo cual, lleva a pensar, que no hay relación entre unos y otros, aunque si la hay.

Por ejemplo:

Entre 0^2=1 y el 1^2=4 hay 1 = 1-0
Entre 1^2=1 y el 2^2=4 hay 3 = 4-1
Entre 2^2=4 y el 3^2=9 hay 5 = 9-4
Entre 3^2=9 y el 4^2=16 hay 7 = 16-9
Entre 4^2=16 y el 5^2=25 hay 9 = 25-16
Entre 5^2=25 y el 6^2=36 hay 11 = 36-25
Entre 6^2=36 y el 7^2=49 hay 13 = 49-36
Entre 7^2=49 y el 8^2=64 hay 15 = 64-49
Entre 8^2=64 y el 9^2=81 hay 17 = 81-64
Entre 9^2=81 y el 10^2=100 hay 19 = 100-81

Así, lo que vemos, es que las diferencias entre sus contiguas, están en números impares, y se diferencian entre ellas con un número par ( 2 ). 

Entonces, formulando lo mismo, con números de base iguales, pero, con exponentes racionales, ¿Pasará lo mismo?

0 = 0 ^ 1,5
1 = 1 ^ 1,5
3 = 2 ^ 1,5
6 = 3 ^ 1,5
10 = 4 ^ 1,5
15 = 5 ^ 1,5
21 = 6 ^ 1,5
28 = 7 ^ 1,5
36 = 8 ^ 1,5
45 = 9 ^ 1,5
55 = 10 ^ 1,5

Entre 1-0 = 1
Entre 3-1 = 2
Entre 6-3 = 3
Entre 10-6 = 4
Entre 15-10 = 5
Entre 21-15 = 6
Entre 28-21 = 7
Entre 36-28 = 8
Entre 45-36 = 9
Entre 55-45 = 10

Si en el anterior teníamos una diferencia entre diferencias de 2 , aquí la tenemos de 1 , lo cual, indica que las potencias, son correctas.

Esto es así por el 2·0,5=1 de diferencia

Si en vez de X^1,5 hubiéramos utilizado el X^1,25 la diferencia sería de 0,5 de 2·0,25 


Prueba las calculadoras Pol Power Calculator desde las siguientes direcciones:

https://www.dos-a-la-tres.com/aplicaciones-online.php#Pol-Power-Calculator-Web

https://www.dos-a-la-tres.com/aplicaciones.php#Pol-Power-Calculator


Comentarios

Entradas populares de este blog

La Base 2 Como Punto 0 en el Teorema de Pitágoras

 La Base 2 Como Punto 0 en el Teorema de Pitágoras Este es mi punto de vista sobre el 2 sobre el teorema de las áreas El punto de vista reflexivo de Pol en el teorema de Pitágoras Si en el Teorema de Pitágoras, se cumple, que con triángulos rectángulos isósceles, pasa que, cuando el lado A es igual a 2 , esto igualamos lado a área de esta forma: 2,82842712 = RootSquare((2^2)+(2^2)) Y esto tiene un área igual al lado, ya que (2·2)/2=2 , y, esto es igual, a quedar-se con el 2 del lado donde partimos de que el lado es igual al área y que restados son el punto 0 Entonces, lo mismo con bases menores a 2 pasaría que: 1,99999999 = RootSquare((1,41421356^2)+(1,41421356^2)) Y esto tiene un área menor al lado, ya que (1,41421356·1,41421356)/2=1 entonces partimos de que el lado es mayor que el área, ya que (1,41421356·1,41421356)/2=1 y 1 es menor que 1,41421356 Entonces, lo mismo con bases mayores a 2 pasaría que: 5,65685424 = RootSquare((4^2)+(4^2)) Y esto tiene un área mayor al lado, ya que...