Ir al contenido principal

Jerarquía de Funciones Según su Existencia

 Jerarquía de Funciones Según Su Existencia

Jerarquía de Funciones Según Su Existencia


Jerarquía Funciones

Jerarquía de Funciones Según Su Existencia


La jerarquía de funciones según su existencia, es la que puedes ver en el gráfico, lo cual, es de vital importancia, a la hora de desarrollar una calculadora.

Las primeras funciones de arriba, completan las siguientes de más abajo, lo cual quiere decir que las de abajo, no existirían sin sus anteriores de más arriba completadas.

De hecho que a demás de ser desarrolladas de arriba hacia abajo, el gráfico también, sirve de esquema en el que una función inferior, no existiría si no existieran sus funciones superiores.

Hay que denotar que las inferiores necesitan de la existencia de sus superiores.

Así, por ejemplo, las raíces no existirían si no existieran las potenciaciones, ni los senos, cosenos y tangentes, tampoco existirían si no existieran raíces ni divisiones.

Este es el resumen de niveles de funciones:

- Nivel 1: Sumas y Restas

Estas no utilizan nada


- Nivel 2: Multiplicaciones, Divisiones y Porcentajes

Las multiplicaciones y las divisiones utilizan sumas y restas, y el porcentaje utiliza multiplicaciones y divisiones.


- Nivel 3: Potenciaciones Normales, Potencias Inversas y Potencias de Multiplicaciones Repetidas

Estas utilizan sumas, restas, multiplicaciones y divisiones.


- Nivel 4: Factoriales Normales y Factoriales de Sumas, Raíces y Logaritmos

Estas utilizan sumas, restas, multiplicaciones, divisiones y potencias.


- Nivel 5: Senos Cosenos y Tangentes

Estas utilizan sumas, restas, multiplicaciones, divisiones, potencias y raíces.


Prueba las calculadoras Pol Power Calculator en las siguientes direcciones:

https://www.dos-a-la-tres.com/aplicaciones-online.php#Pol-Power-Calculator-Web

https://www.dos-a-la-tres.com/aplicaciones.php#Pol-Power-Calculator

Comentarios

Entradas populares de este blog

Relación entre el Cuadrado de X y Factorial de Suma de X

 Relación entre el Cuadrado de X y Factorial de Suma de X Relación entre el Cuadrado de X y Factorial de Suma de X Relación entre Cuadrados y Factoriales de Suma La formula que relaciona los cuadrados con los factoriales de suma sucesivos es la siguiente: (X^2) = X!S + (X-1)!S Así, teniendo un número natural de X se cumple siempre la ecuación.  Si quieres saber más sobre estas cuestiones matemáticas, no lo dudes, consulta la parte de matemáticas de la web de Pol en: https://dos-a-la-tres.com/matematicas.php

Cálculo del Factorial de Sumas de un Número X Natural

 Cálculo del Factorial de Sumas de un Número X Natural Cálculo del Factorial de Sumas de un Número X Natural Cálculo del Factorial de Sumas de un Número X Natural El factorial de suma de un número natural se calcula con la siguiente formula de factorial de suma: X!S = (X+1)·(X·0.5) donde X es cualquier número natural diferente a 0 Descubre más cosas sobre el factorial de suma en la web de Pol en: https://dos-a-la-tres.com/matematicas.php

¿Cómo Funciona una Calculadora de Números Primos?

 ¿Cómo Funciona una Calculadora de Números Primos?    Estas  Calculadoras de Números Primos se pueden Descargar ¿Cómo funciona una calculadora de números primos? - Primero se comprueba que no sea par con el residuo de la división ( X MOD 2 ). Acto seguido se va comprobando con impares mayores a 2 con el residuo de la división ( X MOD Y ) hasta llegar a el número X partido entre 2 - Si el número después de todas las comprobaciones, ningún residuo era igual a 0 es que entonces es primo. Las Pol Power Calculator pueden decirte si un número es primo o no con su botón de función "Prime Number" Con las calculadoras Pol Power Calculator puedes averiguar si un número es primo o no lo es con sus funciones de verificación de números primos. Lo único a tener en cuenta es que el número no puede ser mayor a ( 100.000 ). Usa estos enlaces para ir a las calculadoras de números primos, o descarga su código fuente en: Versión Web con Código Fuente:  https://dos-a-la-tres.com/aplicaciones-onli

Propiedades de las Potencias en las Pol Power Calculator

 Propiedades de las Potencias en las Pol Power Calculator Las Propiedades Equitativa, Equidistante y Correlativa de las Potencias en las Pol Power Calculator La Propiedad Equitativa, Equidistante y Correlativa de las Potencias en las Pol Power Calculator La irrefutable verdad de los números no anti-cuadrados esta en estas formulaciones hechas con las calculadoras Pol Power Calculator: Por ejemplo, tenemos los siguientes cuadrados: 0^2=0 1^2=1 2^2=4 3^2=9 4^2=16 5^2=25 6^2=36 7^2=49 8^2=64 9^2=81 10^2=100 Todos estos números de resultados son números no anti-cuadrados. Como se puede apreciar, parece no existir una escala perfecta y en armonía. Todos los números son distintos de cara a la separación entre ellos, lo cual, lleva a pensar, que no hay relación entre unos y otros, aunque si la hay. Por ejemplo: Entre 0^2=1 y el 1^2=4 hay 1 = 1-0 Entre 1^2=1 y el 2^2=4 hay 3 = 4-1 Entre 2^2=4 y el 3^2=9 hay 5 = 9-4 Entre 3^2=9 y el 4^2=16 hay 7 = 16-9 Entre 4^2=16 y el 5^2=25 hay 9 = 25-16 Ent

Regla Básica de la Simetría de Pares en las Potencias Naturales

 Regla de la Simetría de Pares Sobre las Potencias Naturales Regla de Pol Sobre la Simetría de Pares en las Potenciaciones Diofánticas Positivas Regla de Pol Sobre el Punto del Factorial de Sumas de un Número Natural - Todo natural al cuadrado, tiene un número par de distancia entre a si mismo, y su cuadrado. Así se cumple que Entre X y X al Cuadrado = Número Par. Regla de Pol Sobre la Simetría de Pares entre Potencias Diofánticas Positivas con Exponentes Seguidos entre 2 Números Naturales - Así todo número X natural con exponentes naturales, tiene entre números de resultado de diferentes exponentes naturales y sucesivos, una distancia par entre ellos. Así se cumple que entre X al Cuadrado y X al Cubo = Número Par. También se cumplen los restantes X^3 y X^4 = Número Par Etc... Encuentra más información en: https://dos-a-la-tres.com/matematicas.php

Calculadora de Fracciones con Más de 32 Decimales

 Calculadoras de Fracciones de Más de 32 Decimales Calcula fracciones de más de 32 decimales con estas calculadoras Aquí te dejo 2 direcciones donde hacer fracciones de largada variable Puedes hacer cualquier fracción con más de 32 decimales para la división con estas 2 calculadoras con limites mayores a los normales, en las cuales puedes ajustar las largadas decimales para operaciones que requieran de las divisiones. Pol Power Calculator Para Windows https://www.dos-a-la-tres.com/aplicaciones.php#Pol-Power-Calculator Pol Power Calculator Web ON-LINE y Descargable para usar OFF-LINE https://www.dos-a-la-tres.com/aplicaciones-online.php#Pol-Power-Calculator-Web