Ir al contenido principal

Jerarquía de Funciones de Operador en una Calculadora Según su Existencia

 Jerarquía de Funciones de Operador en una Calculadora Según Su Existencia

Jerarquía de Funciones de Operador en una Calculadora Según Su Existencia


Jerarquía Funciones
Operador


Jerarquía de Funciones de Operador en una Calculadora Según Su Existencia


La jerarquía de funciones de operador en una calculadora según su existencia, es la que puedes ver en el gráfico, lo cual, es de vital importancia, a la hora de desarrollar una calculadora.

Las primeras funciones de arriba, completan las siguientes de más abajo, lo cual quiere decir que las de abajo, no existirían sin sus anteriores de más arriba completadas.

De hecho que a demás de ser desarrolladas de arriba hacia abajo, el gráfico también, sirve de esquema en el que una función inferior, no existiría si no existieran sus funciones superiores.

Hay que denotar que las inferiores necesitan de la existencia de sus superiores.

Así, por ejemplo, las raíces no existirían si no existieran las potenciaciones, ni los senos, cosenos y tangentes, tampoco existirían si no existieran raíces ni divisiones.

Este es el resumen de niveles de funciones:

- Nivel 1: Sumas y Restas

Estas no utilizan nada


- Nivel 2: Multiplicaciones, Divisiones y Porcentajes

Las multiplicaciones y las divisiones utilizan sumas y restas, y el porcentaje utiliza multiplicaciones y divisiones.


- Nivel 3: Potenciaciones Normales, Potencias Inversas y Potencias de Multiplicaciones Repetidas

Estas utilizan sumas, restas, multiplicaciones y divisiones.


- Nivel 4: Factoriales Normales y Factoriales de Sumas, Raíces y Logaritmos

Estas utilizan sumas, restas, multiplicaciones, divisiones y potencias.


- Nivel 5: Senos Cosenos y Tangentes

Estas utilizan sumas, restas, multiplicaciones, divisiones y raíces.


Prueba las calculadoras Pol Power Calculator en las siguientes direcciones:

https://www.dos-a-la-tres.com/aplicaciones-online.php#Pol-Power-Calculator-Web

https://www.dos-a-la-tres.com/aplicaciones.php#Pol-Power-Calculator

Comentarios

Entradas populares de este blog

Observaciones y Diferencias entre Calculadoras

 Observaciones y Diferencias entre Calculadoras Observaciones y Diferencias con las Calculadoras Pol Power Calculator Comparación de Calculadoras Fijémonos en el siguiente ejemplo: 10 = 100 yRoot 2 10 = 1.000 yRoot 3 10 = 10.000 yRoot 4  En estas el resultado se iguala 3,16227766 = 10 yRoot 2 4,64158883 = 100 yRoot 3 5,62341325 = 1.000 yRoot 4 En estas los resultados son crecientes Entonces si tenemos que: 2 = 4 yRoot 2 2 = 8 yRoot 3 ¿Cómo se ven los valores con bases de raíz intermedias o racionales en las Pol Power Calculator? 2 = 5 yRoot 2,25 Pol Power Calculator 2 = 6 yRoot 2,5 Pol Power Calculator 2 = 7 yRoot 2,75 Pol Power Calculator Y en otras calculadoras  2,04481176511479 = 5 yRoot 2,25 System Operator 2,04767251107922 = 6 yRoot 2,5 System Operator 2,02912302143506 = 7 yRoot 2,75 System Operator Entonces, en otras calculadoras, ni se iguala, ni son crecientes, siendo formadas en desorden arbitrario... Sigue más en: https://dos-a-la-tres.com/matematicas.php

Cálculo del Factorial de Sumas de un Número X Natural

 Cálculo del Factorial de Sumas de un Número X Natural Cálculo del Factorial de Sumas de un Número X Natural Cálculo del Factorial de Sumas de un Número X Natural El factorial de suma de un número natural se calcula con la siguiente formula de factorial de suma: X!S = (X+1)·(X·0.5) donde X es cualquier número natural diferente a 0 Descubre más cosas sobre el factorial de suma en la web de Pol en: https://dos-a-la-tres.com/matematicas.php

Saltos en Potencias de Exponente Racional

Saltos en Potencias de Exponente Racional Saltos en Potencias de Exponente Racional   El Lógico Salto de Potencias de Exponentes Racionales Observemos las siguientes potencias de base 2 4 8 y 16 que se cumplen en todas las calculadoras: 4 = 2^2 = 2·2 16 = 4^2 = 4·4 64 = 8^2 = 8·8 256 = 16^2 = 16·16 8 = 2^3 = 4·2 64 = 4^3 = 16·4 = 2^6 512 = 8^3 = 64·8 = 2^9 4.096 = 16^3 = 256·16 = 2^12 Aquí se cumple que (2^12) = (2^6)·(2^6) = 64·64 Entonces lo siguiente se tendría que cumplir pero no se cumple en las Pol Power Calculator: 512=(2^9)=(2^4,5)·(2^4,5) Pues no, esto es 24=(2^4,5) y por tanto 24·24=576=(2^9,125) Entonces, ¿Por que no es igual a la suma de exponentes?. La suma de exponentes entre 2 racionales es algo erróneo. Si tenemos que 512=(2^9)=(2^4)·(2^5) también tenemos que 576=(2^9,125)=((2^4,5)·(2^4,5)) y, por tanto, es la solución correcta. Esta afirmación en sumas es del todo correcta, por ejemplo 2+4=6 así 3+3=6 y parecen iguales, pero no es así ya que 2·4=8 y 3·3=9 entonces ...

¿Qué son los Números Factoriales de Sumas? Definición de Factorial de Suma de X Natural

 ¿Qué son los Números Factoriales de Sumas? ¿Qué es el Factorial de Suma de un Número X? Definición de Factorial de Suma de X Natural Según Pol Definición de Factorial de Suma El factorial de sumas, no es mas que un número en serie de sumas incrementales hasta el número indicado en la serie, que, en vez de ser como los factoriales normales que son multiplicaciones en serie, en el factorial de sumas es con sumas en serie,  aumentando el ciclo con la suma de 1 con cada reiteración. El factorial de sumas de un número X natural, es en si, el punto intermedio que hay entre X y X al cuadrado. Por ejemplo: 3!S = 1+2+3=6 y entonces 4!S=1+2+3+4=10 y para 5!S=1+2+3+4+5=15  En las calculadoras Pol Power Calculator, hay un botón, para hacer este tipo de cálculos ( factorial de suma ), con un solo número de entrada que te brinda la aplicación. Los factoriales de suma se anotan con un signo de admiración como en los factoriales normales pero seguido de una S para diferenciar los de sum...