Ir al contenido principal

2 Formas de Calcular Potenciaciones de Exponente Racional

 2 Formas de Calcular Potenciaciones de Exponentes Racionales

2 Formas de Calcular Potencias de Exponente Racional

La Propiedad del Menos 1

2 Formas de Calcular Potencias de Exponente Racional Según Pol

Para empezar, te diré, 2 formas de calcular potenciaciones de exponente racional con positivos según dos teorías, una la oficialista y la otra la que creo personalmente que es la buena que la llamo teoría de Pol.


Versión oficialista

Primero empezamos por la oficialista en la que se hacen estas ecuaciones:

Cuando X es diferente a 0 y 1 , y M,N es diferente a 0,0 pasa esto: 
X^M,N = (X yRoot (1/0,N)) · X^M

Cuando X es diferente a 0 y 1 y M es natural pasa esto: 
X^M = X^(M-1)·X

Solo es exponente menos 1 en la potencia de exponente entero...


Versión de la Teoría de Pol

Ahora veamos la teoría de Pol sobre potencias:

Cuando X es mayor a 1 y M es mayor a 1 y N es diferente a 0 pasa lo siguiente:

X^M,N = (X^M)+((X^M)·((X-1)·0,N))

Cuando X esta entre 0 y 1 y M es mayor a 1 y N diferente a 0 pasa lo siguiente:

X^M,N = (X^M-1)·((X-1)·0,N)

Cuando X es mayor a 1 y solo disponemos de M cómo entero sin N pasa lo siguiente:

X^M = (X^(M-1))+((X^(M-1))·(X-1))

Cuando X esta entre 0 y 1 , y solo disponemos de M cómo entero sin N pasa lo siguiente:

X^M = ((X^(M-1))·(X-1))-(X^(M-1))

Cómo puedes ver en la teoría de Pol , hay solo operaciones de suma resta y multiplicación en las que destaca que existe siempre un caso que resta 1 a base en las multiplicaciones finales, lo cual denota que el menos 1 de la definición de potencia se cumple siempre. 

También puedes ver que la teoría oficialista tiene operadores de raíz, multiplicación y división, cosa que no son resultados de multiplicaciones solamente, ya que intervienen raíces y divisiones que no son tan solo sumas, restas y multiplicaciones cómo en mi teoría.

Con las calculadoras de Pol puedes elegir entre estas 2 teorías con los botones especiales de cada operador en cuestión.


Prueba las calculadoras Pol Power Calculator desde las siguientes direcciones:




Comentarios

Entradas populares de este blog

Cálculo del Factorial de Sumas de un Número X Natural

 Cálculo del Factorial de Suma de un Número X Natural Cálculo de las Sumas Factoriales de un Número X Natural Cálculo de los Factoriales de Sumas de Números X Naturales El factorial de suma de un número natural, se calcula, con la formula del ante-cuadrado, que es: X!S = X^1,5 = (X+1)·(X/2) = X·((X/2 )+0,5) donde X es cualquier número natural diferente a 0 Descubre más cosas sobre el factorial de suma en la web de Pol en: https://dos-a-la-tres.com/matematicas.php

Autobuses Clásicos Xavi

 Autobuses Clásicos Archivo Gráfico de Xavi Sobre Autobuses Clásicos Galería de Imágenes de autobuses clásicos  https://dos-a-la-tres.com/galeria-autobuses.php

La Simetría de Pares en las Potenciaciones de Números Naturales Diofánticos

 La Simetría de Pares La Simetría de Pares en la Potenciación La Simetría de Pares en la Potenciación Sobre Números Naturales La simetría de pares, es una teoría de Pol, que nos dice, que multiplicar o dividir cualquier número par natural por 2 , nunca presenta ni racionales ni infinitos. La simetría de pares, también, es la que determina, que entre X y X al cuadrado, o, de X al cuadrado a X al cubo, con una unidad de exponente de distancia cómo en sucesivos, cuando X es natural, siempre hay un número par de distancia, siendo así la parte de 1 unidad de exponente equivalente a un natural par, con una parte de distancia de números pares siempre. La simetría de pares, es un teorema, que parte sobre ecuaciones con naturales, que nos muestra, que en esta sucesión de ecuaciones diofánticas naturales, de números a si mismos como los siguientes, no existen los exponentes impares en los resultados naturales, siendo todos ellos de exponente natural par de su doble. Si tenemos que en la sime...

Las multiplicaciones de 2 parámetros están incompletas a su inversa por esto...

Las Multiplicaciones Completas e Incompletas  Multiplicaciones de 2 y 3 parámetros Las multiplicaciones de 2 parámetros están incompletas a su inversa por esto... Si división y residuo son inversas de la multiplicación, entonces la multiplicación, no estaría completa sin el residuo. del que si se cuenta en la multiplicación asimétrica de 3 parámetros. Definición de Multiplicación Según Pol La multiplicación por definición, es un número natural sumado repetidamente las veces que diga otro número natural, y esto provoca un resultado que lógicamente es natural. Lo que no se sabe de las multiplicaciones normales entre 2 números es que estas multiplicaciones normales, son operaciones incompletas, de cara a los operadores de su función inversa ( la división y su residuo ) que por el hecho de ser dos tipos de inversa, lo que nos provoca es una multiplicación asimétrica de 3 números para que la multiplicación sea un operador completo con exactitud en sus inversos. El operador que opera con...

¿Qué son los Números Perfectos? 3 Formas de Calcular-los

¿Qué son los Números Perfectos?  3 Formas de Calcular Números Perfectos ¿Qué son los Números Perfectos? Los números perfectos, son todos aquellos números enteros pares, que son la suma de todos sus divisores naturales, sin incluir-se a si mismo. Del mismo modo, el número perfecto, es todo aquel número par que es el factorial de sumas natural o su ante-cuadrado, del primer divisor natural impar, que hay entre los divisores naturales del 1 a la mitad del número perfecto con la formula: Número Perfecto = ((2^X)-1)!S  = ((2^X)-1)^1,5  donde X es natural e impar de valor grupal natural, incluyendo al 2 también, cómo excepción par. El número perfecto es aquel que es amigo a si mismo. Euclides, postulo en el siglo 4 a.c., la solución de la ecuación de número perfecto, que es la siguiente: (2^(X-1))·((2^X)-1) Donde X es cualquier número natural e impar, y que a demás, la parte de ((2^X)-1) era igual a un número primo, lo que esto último no es cierto para todos los casos... Donde ...

Números Irracionales ¿Dónde Puedo Encontrar-los?

 Números Irracionales ¿Dónde Puedo Encontrar-los? Números Irracionales ¿Dónde Puedo Encontrar-los? ¿Dónde puedo encontrar-me números irracionales? Los números irracionales suelen salir en funciones que utilizan las divisiones cómo métodos de encontrar resultados. Los números irracionales existen en divisiones y funciones derivadas de estas cómo son el porcentaje, la raíz, el logaritmo, los senos, los cosenos, y las tangentes. Las funciones de multiplicación y potenciación que no sean entre algún factor de 1 o 2 , pueden tener números inaccesibles mediante sus funciones opuestas cómo ahora puede ser la división de 10/3 o la raíz de 2yRoot 2 o el logaritmo de 32 LOG 4 donde obtenemos un número irracional en todos estos ejemplos. Los números irracionales surgen de números in-fraccionables que dependen de el resultado de una división que contiene una parte de 1 in-fraccionable la cual puede arrojar infinidad de decimales en estas funciones mencionadas ( división, porcentaje, raíz, loga...