Ir al contenido principal

Saltos en Potencias de Exponente Racional

Saltos en Potencias de Exponente Racional

Saltos en Potencias de Exponente Racional


 


El Lógico Salto de Potencias de Exponentes Racionales

Nunca esta solución natural 2·4 será mayor que 3·3 en multiplicaciones, aunque la segunda ecuación este con los números de entre los dos primeros.

Observemos las siguientes potencias de base 2 que se cumplen en todas las calculadoras:

4 = 2 ^ 2

0,25 = ( 1 / 2) ^ 2

8 = 2 ^ 3

0,125 = ( 1 / 2) ^ 3

Entonces se cumple en las calculadoras Pol Power Calculator

3 = 2 ^ 1,5

0,375 = ( 1 / 2) ^ 1,5

6 = 2 ^ 2,5

0,1875 = ( 1 / 2) ^ 2,5

Entonces lo siguiente es sobre enteros

1 = 4 · 0,25

16 = 4 / 0,25+

1 = 8 · 0,125

64 = 8 / 0,125

Y para exponente racional pasa lo siguiente

1,125 = 6 · 0,1875

32 = 6 / 0,1875

1,125 = 3 · 0,375

8 = 3 / 0,375

Entonces se cumple esto

8 = (3^2) / 1,125 = 9 / 1,125

32 = (6^2) / 1,125 = 36 / 1,125


Los operadores de potencias de exponente racional en las calculadoras Pol Power Calculator cumplen las propiedades de los exponentes naturales que son propiedades de equivalentes equidistantes y correlativas y esto forma series en sus resultados y estos, con exponentes racionales, se ajustan a esas series de números que conforman los naturales.


Existe Más información en la web de Pol en:

https://dos-a-la-tres.com/matematicas.php


Comentarios

Entradas populares de este blog

Cálculo del Factorial de Sumas de un Número X Natural

 Cálculo del Factorial de Suma de un Número X Natural Cálculo de las Sumas Factoriales de un Número X Natural Cálculo de los Factoriales de Sumas de Números X Naturales El factorial de suma de un número natural, se calcula, con la formula del ante-cuadrado, que es: X!S = X^1,5 = (X+1)·(X/2) = X·((X/2 )+0,5) donde X es cualquier número natural diferente a 0 Descubre más cosas sobre el factorial de suma en la web de Pol en: https://dos-a-la-tres.com/matematicas.php

Autobuses Clásicos Xavi

 Autobuses Clásicos Archivo Gráfico de Xavi Sobre Autobuses Clásicos Galería de Imágenes de autobuses clásicos  https://dos-a-la-tres.com/galeria-autobuses.php

La Simetría de Pares en las Potenciaciones de Números Naturales Diofánticos

 La Simetría de Pares La Simetría de Pares en la Potenciación La Simetría de Pares en la Potenciación Sobre Números Naturales La simetría de pares, es una teoría de Pol, que nos dice, que multiplicar o dividir cualquier número par natural por 2 , nunca presenta ni racionales ni infinitos. La simetría de pares, también, es la que determina, que entre X y X al cuadrado, o, de X al cuadrado a X al cubo, con una unidad de exponente de distancia cómo en sucesivos, cuando X es natural, siempre hay un número par de distancia, siendo así la parte de 1 unidad de exponente equivalente a un natural par, con una parte de distancia de números pares siempre. La simetría de pares, es un teorema, que parte sobre ecuaciones con naturales, que nos muestra, que en esta sucesión de ecuaciones diofánticas naturales, de números a si mismos como los siguientes, no existen los exponentes impares en los resultados naturales, siendo todos ellos de exponente natural par de su doble. Si tenemos que en la sime...

Calculadoras de Factoriales

Calculadoras de Factoriales Las Pol Power Calculator son 2 Calculadoras de Factoriales Puedes Calcular un Número Factorial multiplicativo o de suma junto al ante-cuadrado con las Calculadoras Pol Power Calculator Aquí te muestro enlaces hacia las dos calculadoras llamadas Pol Power Calculator con las que podrás hacer factoriales de sumas en un clic . Versión Web:  https://www.dos-a-la-tres.com/aplicaciones-online.php#Pol-Power-Calculator-Web Versión Windows:  https://www.dos-a-la-tres.com/aplicaciones.php#Pol-Power-Calculator Utiliza la App Factoriales exclusiva de Pol Software desde el artículo en la Web de Pol en: https://dos-a-la-tres.com/aplicaciones-online.php#App-Factoriales

Propiedad Equitativa Equidistante y Correlativa de Resultados de Potencias

 Propiedades de las Potenciaciones Propiedad en las Potencias de las Calculadoras Pol Power Calculator Propiedades de Potencias en las calculadoras Pol Power Calculator Las operaciones con potencias, tienen sus propias normas de simplificación, y son propiedades o reglas, que siguen las calculadoras Pol Power Calculator, y estas cumplen siempre, dadas las propiedades de los parámetros iniciales que paso a describir en el siguiente texto: Dados los números naturales o racionales positivos A y B , diferentes a 0 o 1 , con 2 exponentes N y M naturales de valor grupal, se cumple lo siguiente: Primera Norma: Potencia de una Multiplicación (A·B)^N=(A^N)·(B^N) Segunda Norma: Multiplicación de Potencias (A^N)·(A^M)=(A^(N+M)) Tercera Norma: Potencia de una División (A/B)^N=(A^N)/(B^N) Cuarta Norma: División de Potencias (A^N)/(A^M)=(A^(N-M))=A^R Si R > 0 ; Resultado = A^R Si R < 0 ; Resultado = (1/A)^R con R en positivo Si R = 0 ; Resultado = A = 1 Propiedades Porcentuales de Pote...

2 Formas de Calcular Potenciaciones de Exponente Racional

 2 Formas de Calcular Potenciaciones de Exponentes Racionales 2 Formas de Calcular Potencias de Exponente Racional 2 Formas de Calcular Potencias de Exponente Racional Según Pol Para empezar, te diré, 2 formas de calcular potenciaciones de exponente racional con positivos según dos teorías, una la oficialista y la otra la que creo personalmente que es la buena que la llamo teoría de Pol. Versión oficialista Primero empezamos por la oficialista en la que se hacen estas ecuaciones: Cuando X es diferente a 0 y 1 , y M,N es diferente a 0,0 pasa esto:   X^M,N = (X yRoot (1/0,N)) · X^M Cuando X es diferente a 0 y 1 y M es natural pasa esto:   X^M = X^(M-1)·X Solo es exponente menos 1 en la potencia de exponente entero... Versión de la Teoría de Pol Ahora veamos la teoría de Pol sobre potencias: Cuando X es mayor a 1 y M es mayor a 1 y N es diferente a 0 pasa lo siguiente: X^M,N = (X^M)+((X^M)·((X-1)·0,N)) Cuando X esta entre 0 y 1 y M es mayor a 1 y N diferente a 0 pasa lo sigu...