Ir al contenido principal

Entradas

La Séptima Dimensión

La Séptima Dimensión Segmentación del Espacio Mínima Cuantificable Espacio 1 x 1 x 1   + 1 x 1 x 1 Espacio constituido de 2!S = 3 Dimensiones y 3!S = 6 Limites de Dimensión 3,5!S = 8 y 8!S = 36 Donde 36!S = 666 = 37·18 = 36·18,5 Perímetro Esférico Contable por 8 ((6^2)+(2^4,5))·666 = (36+24)·666 = 39.960 Perímetro Siguiente Espacio del de 8 Puntos Mínimos el de 64 = 2x2x2 + 2x2x2 8^2 = 8·8 = 64 Puntos  7,5!S = 8·4 = 32   Visita mi web en:  https://dos-a-la-tres.com/index.php#Inicio  
Entradas recientes

Las Partes Medias en Multiplicaciones No Son Las Que Parecen

 Las Partes Medias en Multiplicaciones No Son Las Que Parecen ¿Por que (2^1)·(2^2) no es igual a (2^1,5)·(2^1,5) si la suma de racionales de exponente es de 3?  Por la sencilla razón siguiente: 2·4=8 pero 3·3=9 Encuentra más información en mis paginas de matemáticas con Pol en: https://dos-a-la-tres.com/matematicas.php

Simetría Par o Simetría Impar

Simetría Par o Simetría Impar La Simetría Par o Impar Si en mis calculadoras tenemos lo siguiente: 2^10 = 1024 donde esta es de simetría par (10) 2^11 = 2048 donde esta es de simetría impar (11) 2^12 = 4096 donde esta es de simetría par otra vez (12) Entonces se cumple que  64 = 4096 yRoot 2 = 2^6 45,25483399 = 2048 yRoot 2 = 2^5,5 pero este caso de potencia no es así en mis calculadoras, siendo 2^5,5=48   32 = 1024 yRoot 2 = 2^5 Entonces puedes pensar que el 45 esta entre 32 y el 64 pero ese caso es de simetría impar ( 45,254... ) y no de pares ( 48 ) cómo la inicial ( 2 ) y entonces se cumple que: 1024 = 32^2 esta es fácil de simetría par 2048 = (64-0,5)!S esta es la de simetría impar, así que le pasamos una simetría impar para hacer el par exacto 4096 = 64^2 otra vez de simetría par... Cómo digo siempre, la solución está muchas veces entre naturales, los cuales, cumplen axiomas y teorías que son la base para luego tener reales que cumplan con los naturales...  ...

La Importancia de los Números Naturales

La Importancia de los Números Naturales Todo es Natural Internamente en una calculadora. Toda realidad con coma, es algo Natural sin ella, y la naturalidad, es hasta un punto cualquiera cierta dado que es precisa en cuanto la analizamos con números naturales. Así, de algún modo, los naturales son usados en todas las cuentas que hace una calculadora, y si tu le das realidad con coma, eso no importa, ya que la combinación de números de entrada será natural dependiendo del operador que sea, y sea la sumatoria que sea, operará con naturales para darte una contestación entera o racional. Muchos de los operadores de una calculadora pueden ser interpretados cómo sumatorias con un par de  naturales de entrada valor grupal, cómo los que puedes ver en la imagen.  Todo es cuantificable mediante naturales y estos son la base de entendimiento de lo que llamamos números reales. Ya lo decía Pitágoras en: "Los números enteros pueden expresar todas las magnitudes del universo" Puedes consult...

Propiedades de Sumas Factoriales

 Propiedades de Sumas Factoriales Propiedades de los Factoriales de Suma Propiedades de los Factoriales de Suma en las Calculadoras Pol Power Calculator A continuación te doy a conocer las propiedades de los factoriales de suma Calculo del Factorial de Suma de un Natural de X ( Valor Medio Entre X y X^2 ) X!S = (X+1)·(X/2) Calcular Cuadrados Naturales con los Factoriales de Suma ( Valor Correlativo )  X^2 = X!S + (X-1)!S Calcular el Cubo Natural Basando-se en una Simetría Par Natural Y = ((X^2)-0,5)!S  X^3 = (Y · 2) / X Que esto es por: X^2 = X + ((X-1)!S +  (X-1)!S ) Calcular Números Perfectos con Factoriales de Suma ( Valor de Perfecto ) Perfecto = ((2^X)-1)!S Donde la X es Cualquier Natural Impar Mayor a 2  Aprende más cosas entrando a mi web en: https://dos-a-la-tres.com/matematicas.php

Observaciones y Diferencias entre Calculadoras

 Observaciones y Diferencias entre Calculadoras Observaciones y Diferencias con las Calculadoras Pol Power Calculator Comparación de Calculadoras Fijémonos en el siguiente ejemplo: 10 = 100 yRoot 2 10 = 1.000 yRoot 3 10 = 10.000 yRoot 4  En estas el resultado se iguala 3,16227766 = 10 yRoot 2 4,64158883 = 100 yRoot 3 5,62341325 = 1.000 yRoot 4 En estas los resultados son crecientes Entonces si tenemos que: 2 = 4 yRoot 2 2 = 8 yRoot 3 ¿Cómo se ven los valores con bases de raíz intermedias o racionales en las Pol Power Calculator? 2 = 5 yRoot 2,25 Pol Power Calculator 2 = 6 yRoot 2,5 Pol Power Calculator 2 = 7 yRoot 2,75 Pol Power Calculator Y en otras calculadoras  2,04481176511479 = 5 yRoot 2,25 System Operator 2,04767251107922 = 6 yRoot 2,5 System Operator 2,02912302143506 = 7 yRoot 2,75 System Operator Entonces, en otras calculadoras, ni se iguala, ni son crecientes, siendo formadas en desorden arbitrario... Sigue más en: https://dos-a-la-tres.com/matematicas.php

¿Qué es el Porunidaje? Definición de Porunidaje Según Pol

¿Qué es el Porunidaje?  Definición de Porunidaje El Porunidaje según Pol El porcentaje es una ecuación de una multiplicación y una división de resolución con escala 100 El porunidaje es simplemente un porcentaje al que le cambiamos el 100 por nuestra unidad limite de salida o escala que es el 100 en el porcentaje y que para el porunidaje es un número cualquiera. El porunidaje es una invención de Pol que contempla en la misma ecuación de un porcentaje los 3 parámetros en vez de solo 2 para así utilizar todo el potencial de esta ecuación genérica a la que llamamos porunidaje.  Sigue más en:  https://dos-a-la-tres.com/matematicas.php

Relaciones de los Factoriales de Suma de X con su Cuadrado y Los Números Perfectos

 Factoriales de Suma y su Relación con sus Cuadrados y los Números Perfectos Relaciones de los Factoriales de Suma de X con su Cuadrado y Los Números Perfectos Relaciones de los Factoriales de Suma de X con su Cuadrado y Los Números Perfectos La forma de calcular un factorial de suma natural es la siguiente: X!S = (X+1) · (X·0,5) La relación de este factorial de suma con su cuadrado es: X^2 = ((X-1)!S ) +  (X!S) Entonces, su relación con los números perfectos es la siguiente: Número Perfecto = ((2^Y)-1)!S   donde Y es cualquier número impar natural Más información en:  https://dos-a-la-tres.com/matematicas.php

La Cuestión de los Radicales

 La Cuestión de los Radicales La Cuestión de los Radicales o Raíces La incuestionable verdad de los radicales o raíces de 2 Si tenemos que, en otras calculadoras se cumple esto Entre 0 y 1 de exponente ocurre que: 2^0 = 1 2^0,5 = 2 yRoot (1/0,5) = 2 yRoot 2 = 1,41421356 Nos adelantamos con el 2 en el radicando ya que eso no es 2 si no 1 una simetría ( 2^0 a 2^1 = 1 y no base 2 )  2^1 = 2 = Lugar donde comienza la simetría de números hacia una sola dirección de multiplicaciones a si mismos 2^1,5 = 8 yRoot (1/0,5) = 8 yRoot 2 = 2,82842712 Nos adelantamos poniendo el 8 en vez de 4 o 6 donde el 1 se pasa dos simetrías ( 2^1 a 2^3 ) Y esto es la primera simetría de 2^1 de exponente ( de 2^1 a 2^2 ) que va en una sola dirección cuando vamos a mayores hasta este punto 2^2 = 4 donde aquí el exponente es de 1 y no de 2 ( 2^1 ) Si aceptamos la simetría de 2^1 a 2^2 y le pasamos números desde estas simetrías el 2^1,5=3 y no 2,828422712 que es lo que da las Pol Power Calculator.  El ...

Apps Web y Para Escritorios Windows de Pol Software

Apps Web y Para Escritorios de Windows Pol Software Apps Web y Para Escritorios Windows Pol Software https://dos-a-la-tres.com/aplicaciones.php https://dos-a-la-tres.com/aplicaciones-online.php https://dos-a-la-tres.com/programacion.php